Prime-counting function

Results: 114



#Item
61Number theory / Combinatorics / Prime numbers / Complex analysis / Binomial coefficient / Factorial / Natural density / Prime-counting function / Pi / Mathematics / Mathematical analysis / Integer sequences

Divisors of the middle binomial coefficient Carl Pomerance Mathematics Department, Dartmouth College, Hanover, NH 03755, USA [removed] December 20, 2013

Add to Reading List

Source URL: www.math.dartmouth.edu

Language: English - Date: 2013-12-21 18:24:33
62Analytic number theory / Conjectures / Prime numbers / Prime number theorem / Prime-counting function / Riemann hypothesis / Quadratic residue / Exponentiation / Algebraic number field / Mathematics / Abstract algebra / Number theory

On pseudosquares and pseudopowers Carl Pomerance Department of Mathematics Dartmouth College Hanover, NH[removed], USA [removed]

Add to Reading List

Source URL: www.math.dartmouth.edu

Language: English - Date: 2008-03-17 11:52:03
63Modular arithmetic / Arithmetic function / Prime-counting function / Exponentiation / Fibonacci number / Binomial coefficient / Proof that π is irrational / Mathematics / Number theory / Prime numbers

Proceedings of the Edinburgh Mathematical Society[removed], 271–289 DOI:[removed]S0013091510001355 ON NUMBERS n DIVIDING THE nTH TERM OF A LINEAR RECURRENCE 1

Add to Reading List

Source URL: www.math.dartmouth.edu

Language: English - Date: 2012-05-10 10:36:06
64Integer sequences / Prime-counting function / Prime number theorem / Prime number / Function / Logarithm / Riemann zeta function / Exponentiation / Big O notation / Mathematics / Mathematical analysis / Analytic number theory

Computing π(x): An Analytic Method J. C. Lagarias A. M. Odlyzko

Add to Reading List

Source URL: www.dtc.umn.edu

Language: English - Date: 1998-04-13 22:09:53
65Mathematical analysis / Prime numbers / Prime-counting function / Divisor function / Coprime / Spectral theory / Normal distribution / Spectral theory of ordinary differential equations / Mathematics / Number theory / Analytic number theory

Some new results on λ, ϕ, and σ Carl Pomerance, Dartmouth College

Add to Reading List

Source URL: www.math.dartmouth.edu

Language: English - Date: 2009-12-01 12:16:30
66Field theory / Algebraic number theory / Polynomials / Conjectures / Riemann hypothesis / Exponentiation / Prime-counting function / Finite field / Algebraic number field / Mathematics / Abstract algebra / Analytic number theory

Counting Fields Carl Pomerance, Dartmouth College joint work with

Add to Reading List

Source URL: www.math.dartmouth.edu

Language: English - Date: 2008-07-24 13:41:54
67Integer sequences / Prime numbers / Algebraic number theory / Prime-counting function / Algebraic number field / Arithmetic function / Prime number theorem / Shuffling / Riemann hypothesis / Mathematics / Number theory / Analytic number theory

Order and chaos Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA

Add to Reading List

Source URL: www.math.dartmouth.edu

Language: English - Date: 2009-04-16 08:57:34
68Analytic number theory / Algebraic number theory / Algebraic number field / Field theory / Prime-counting function / Arithmetic function / Shuffling / Faro shuffle / Riemann hypothesis / Mathematics / Abstract algebra / Mathematical analysis

Order and chaos Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA

Add to Reading List

Source URL: www.math.dartmouth.edu

Language: English - Date: 2009-03-04 19:59:28
69Analytic number theory / Logarithms / Mathematical constants / Arithmetic functions / Prime numbers / Natural logarithm of 2 / Chebyshev function / Prime number theorem / Prime-counting function / Mathematics / Mathematical analysis / Number theory

/asolve/website/pih/pih.dvi

Add to Reading List

Source URL: www.people.fas.harvard.edu

Language: English - Date: 2009-09-14 07:33:28
70Analytic number theory / Natural logarithm of 2 / Numbers / Riemann zeta function / Polylogarithm / Prime-counting function / Mathematical analysis / Mathematics / Logarithms

Two Asymptotic Series Steven Finch December 10, 2003 When enumerating trees [1, 2] or prime divisors [3, 4], the leading term of the corresponding asymptotic series is usually sufficient for practical purposes. Greater a

Add to Reading List

Source URL: www.people.fas.harvard.edu

Language: English - Date: 2004-05-03 09:15:58
UPDATE